Tente resolver os exercícios antes de olhar as respostas!
 
1.Calcule a derivada das funções dadas:

a) f(x) = x3+x2-12

b) f(x) = 2x3 -10x-1

c) g(z) = 7z-3 + z2 +5

d)

e) f(x)= (x+1)3

f) P(z) = (3z-1)(2z+1)

g)

 
2. Calcule a derivada:
a) e)
b) f)
c) g)
d) h)

 

3. Calcule a derivada usando as regras do produto e do quociente

a) f(x) = x(x2+1) f) f(x) = (x4-4)(x2+x+1)
b) g)
c) h)
d) i)
e) f(t) = (2t+1)(t2-2) j)
 
4. Calcule a derivada das funções dadas:
a) f(x) = 7e2x +3e4x g) f(x) = esenx
b) h) f(x) = sen(ex)
c) f(x) = 4e-x +7e-2x i)
d) f(x) = x2e2x j) f(t) = cos(te-2t)
e) f(x) = (2e3x +2e-2x)4 k) f(x) = tg(e5-6x)
f) f(x) = e1/x l)
 
5. Determine os coeficientes a e b tais que p(x) = x2 + ax + b satisfaz p(1) = 0 e p'(1) = 4.
 
6. Encontre a taxa de variação da área de um quadrado em relação ao comprimento de seu lado s, quando s = 3 e s = 5.
 
7. Uma pedra é lançada verticalmente para cima com uma velocidade inicial de 25 pés/s do alto de um prédio de 30 pés

a) Qual é a altura da pedra depois de 0,25s ?

b) Encontre a velocidade da pedra depois de 1 s.

c) Quando é que a pedra atinge o solo?

 
8. A temperatura de um objeto (em graus Fahrenheit), como função do tempo, (em minutos) é
T = (3/4)t2 -30t +340, para . A que taxa o objeto esfria depois de 10 minutos (dê as unidades corretas) ?
 
9. A Terra exerce uma força gravitacional de (em newtons) sobre um objeto com uma massa de 75 kg, onde r é a distância (em metros) do centro da Terra. Encontre a taxa de variação da força em relação à distância r na superfície da Terra, supondo que o raio da Terra seja de 6,77 x 106 m.
 
10. A potência fornecida por uma bateria à um aparelho de resistência R (em ohms) é W. Encontre a taxa de variação da potência em relação à resistência em R = 3 e R = 5 ohms.
 
11. Para a Lei de Faraday, um campo magnético de intensidade B (em teslas) induz uma voltagem de tamanho V = B L v num arame condutor de comprimento L metros que se mova a uma velocidade de v m/s perpendicularmente ao campo. Suponha que B = 2 e L = 0,5.
a) Encontre a taxa de variação dV/dv.
b) Encontre a taxa de variação de V em relação ao tempo se v = 4t+9
 
12. André estabelece que com h horas de tutoria individual ele é capaz de responder S(h) por cento dos problemas de Matemática. Qual é o significado da derivada S'(h)? Qual deveria ser maior: S'(3) ou S'(30)? Explique.
 
13. Uma pessoa no décimo andar de um prédio vê um balde (deixado cair por um lavador de vidraças) passar pela janela e observa que bate no chão 1,5s depois. Suponha que cada andar meça 16 pés (e despreze o atrito do ar). De qual andar caiu o balde?'
 
14. Encontre a aceleração no instante t = 5 minutos de um helicóptero cuja altura (em pés) é h(t) = -3t3+400t. Faça um esboço da aceleração h''(t) ao longo de . Por que esse gráfico mostra que o helicóptero está diminuindo a velocidade nesse intervalo de tempo?